Kinematic Evidence of an Embedded Protoplanet in HD 142666 Identified by Machine Learning

Author:

Terry J. P.ORCID,Hall C.ORCID,Abreau S.ORCID,Gleyzer S.ORCID

Abstract

Abstract Observations of protoplanetary disks have shown that forming exoplanets leave characteristic imprints on the gas and dust of the disk. In the gas, these forming exoplanets cause deviations from Keplerian motion, which can be detected through molecular line observations. Our previous work has shown that machine learning can correctly determine if a planet is present in these disks. Using our machine-learning models, we identify strong, localized non-Keplerian motion within the disk HD 142666. Subsequent hydrodynamics simulations of a system with a 5 M J planet at 75 au recreate the kinematic structure. By currently established standards in the field, we conclude that HD 142666 hosts a planet. This work represents a first step toward using machine learning to identify previously overlooked non-Keplerian features in protoplanetary disks.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3