Early Planet Formation in Embedded Disks (eDisk). III. A First High-resolution View of Submillimeter Continuum and Molecular Line Emission toward the Class 0 Protostar L1527 IRS

Author:

van ’t Hoff Merel L. R.ORCID,Tobin John J.ORCID,Li Zhi-YunORCID,Ohashi NagayoshiORCID,Jørgensen Jes K.ORCID,Lin Zhe-Yu DanielORCID,Aikawa YuriORCID,Aso YusukeORCID,de Gregorio-Monsalvo ItziarORCID,Gavino SachaORCID,Han IlseungORCID,Koch Patrick M.ORCID,Kwon WoojinORCID,Lee Chang WonORCID,Lee Jeong-EunORCID,Looney Leslie W.ORCID,Narayanan SuchitraORCID,Plunkett AdeleORCID,(Insa Choi) Jinshi SaiORCID,Santamaría-Miranda AlejandroORCID,Sharma RajeebORCID,Sheehan Patrick D.ORCID,Takakuwa ShigehisaORCID,Thieme Travis J.ORCID,Williams Jonathan P.ORCID,Lai Shih-PingORCID,Phuong Nguyen ThiORCID,Yen Hsi-WeiORCID

Abstract

Abstract Studying the physical and chemical conditions of young embedded disks is crucial to constrain the initial conditions for planet formation. Here we present Atacama Large Millimeter/submillimeter Array observations of dust continuum at ∼0.″06 (8 au) resolution and molecular line emission at ∼0.″17 (24 au) resolution toward the Class 0 protostar L1527 IRS from the Large Program eDisk (Early Planet Formation in Embedded Disks). The continuum emission is smooth without substructures but asymmetric along both the major and minor axes of the disk as previously observed. The detected lines of 12CO, 13CO, C18O, H2CO, c-C3H2, SO, SiO, and DCN trace different components of the protostellar system, with a disk wind potentially visible in 12CO. The 13CO brightness temperature and the H2CO line ratio confirm that the disk is too warm for CO freezeout, with the snowline located at ∼350 au in the envelope. Both molecules show potential evidence of a temperature increase around the disk–envelope interface. SO seems to originate predominantly in UV-irradiated regions such as the disk surface and the outflow cavity walls rather than at the disk–envelope interface as previously suggested. Finally, the continuum asymmetry along the minor axis is consistent with the inclination derived from the large-scale (100″ or 14,000 au) outflow, but opposite to that based on the molecular jet and envelope emission, suggesting a misalignment in the system. Overall, these results highlight the importance of observing multiple molecular species in multiple transitions to characterize the physical and chemical environment of young disks.

Funder

NASA ∣ SMD ∣ Astrophysics Division

National Science Foundation

National Science and Technology Council (NSTC) in Taiwan

Independent Research Fund Denmark

National Radio Astronomy Observatory

National Astronomical Observatory of Japan

JSPS KAKENHI

MCIN/AEI

National Research Foundation of Korea

Korea Astronomy and Space Science Institute

Academia Sinica

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3