Gas-phase Modeling of the Cometary Coma of Interstellar Comet 2I/Borisov

Author:

Ahmed SanaORCID,Acharyya KinsukORCID

Abstract

Abstract Comet 2I/Borisov is the first interstellar comet observed in the solar system, providing a unique opportunity to understand the physical conditions that prevailed in a distant unknown planetary system. Observations of the comet show that the CO/H2O ratio is higher than that observed in solar system comets at a heliocentric distance r h < 2.5 au. We aim to study the gas-phase coma of comet 2I/Borisov using a multifluid chemical-hydrodynamical model. The gas-phase model includes a host of chemical reactions, with the neutrals, ions, and electrons treated as three separate fluids. Energy exchange between the three fluids due to elastic and inelastic scattering and radiative losses are also considered. Our model results show that in the region of the coma beyond ∼100 km of the nucleus, e−CO inelastic collisions leading to vibrational excitation of CO causes a loss of energy from the electron fluid. We find a high abundance of CO+ and HCO+ ions, and we show how these two ions affect the creation/destruction rates of other ions such as H2O+, H3O+, N-bearing ions, and large organic ions. We find that the presence of CO leads to a higher abundance of large organic ions and neutrals such as CH 3 OH 2 + , CH 3 OCH 4 + , and CH3OCH3, as compared to a typical H2O-rich solar system comet. We conclude that the presence of a large amount of CO in the coma of comet 2I/Borisov, combined with a low production rate, affects the coma temperature profile and flux of major ionic species significantly.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3