Phase Shifts Measured in Evanescent Acoustic Waves above the Solar Photosphere and Their Possible Impacts on Local Helioseismology

Author:

Zhao JunweiORCID,Rajaguru S. P.ORCID,Chen RuizhuORCID

Abstract

Abstract A set of 464 minutes of high-resolution high-cadence observations were acquired for a region near the Sun’s disk center using the Interferometric BI-dimensional Spectrometer installed at the Dunn Solar Telescope. Ten sets of Dopplergrams are derived from the bisector of the spectral line corresponding approximately to different atmospheric heights, and two sets of Dopplergrams are derived using an MDI-like algorithm and center-of-gravity method. These data are then filtered to keep only acoustic modes, and phase shifts are calculated between Doppler velocities of different atmospheric heights as a function of acoustic frequency. The analysis of the frequency- and height-dependent phase shifts shows that, for evanescent acoustic waves, oscillations in the higher atmosphere lead those in the lower atmosphere by an order of 1 s when their frequencies are below about 3.0 mHz, and lags behind by about 1 s when their frequencies are above 3.0 mHz. Nonnegligible phase shifts are also found in areas with systematic upward or downward flows. All these frequency-dependent phase shifts cannot be explained by vertical flows or convective blueshifts, but are likely due to complicated hydrodynamics and radiative transfer in the nonadiabatic atmosphere in and above the photosphere. These phase shifts in the evanescent waves pose great challenges to the interpretation of some local helioseismic measurements that involve data acquired at different atmospheric heights or in regions with systematic vertical flows. More quantitative characterization of these phase shifts is needed so that they can either be removed during measuring processes or be accounted for in helioseismic inversions.

Funder

National Aeronautics and Space Administration

DST ∣ Science and Engineering Research Board

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3