CO Excitation in High-z Main-sequence Analogues: Resolved CO(4−3)/CO(3−2) Line Ratios in DYNAMO Galaxies

Author:

Lenkić LauraORCID,Bolatto Alberto D.ORCID,Fisher Deanne B.ORCID,Abraham RobertoORCID,Glazebrook KarlORCID,Herrera-Camus RodrigoORCID,Levy Rebecca C.ORCID,Obreschkow DanailORCID,Volpert Carolyn G.

Abstract

Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of Hα to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [Cii] emission with respect to the total infrared luminosity.

Funder

Universities Space Research Association

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolved low-J12CO excitation at 190 parsec resolution across NGC 2903 and NGC 3627;Monthly Notices of the Royal Astronomical Society;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3