What Are the Radial Distributions of Density, Outflow Rates, and Cloud Structures in the M82 Wind?

Author:

Xu XinfengORCID,Heckman TimothyORCID,Yoshida MichitoshiORCID,Henry AlainaORCID,Ohyama YouichiORCID

Abstract

Abstract Galactic winds play essential roles in the evolution of galaxies through the feedback they provide. Despite intensive studies of winds, the radial distributions of their properties and feedback are rarely observable. Here we present such measurements for the prototypical starburst galaxy, M82, based on observations by the Subaru Telescope. We determine the radial distribution of outflow densities (n e ) from the spatially resolved [S ii] λλ6717, 6731 emission lines. We find that n e drops from 200 to 40 cm−3 with radius (r) between 0.5 and 2.2 kpc with a best-fit power-law index of r −1.2. Combined with resolved Hα lines, we derive mass, momentum, and energy outflow rates, which drop quite slowly (almost unchanged within error bars) over this range of r. This suggests that the galactic wind in M82 can carry mass, momentum, and energy from the central regions to a few kiloparsecs with minimal losses. We further derive outflow cloud properties, including size and column densities. The clouds we measure have pressures and densities that are too high to match those from recent theoretical models and numerical simulations of winds. By comparing with a sample of outflows in local star-forming galaxies studied with UV absorption lines, the above-derived properties for M82 outflows match well with the published scaling relationships. These matches suggest that the ionized gas clouds traced in emission and absorption are strongly related. Our measurements motivate future spatially resolved studies of galactic winds, which is the only way to map the structure of their feedback effects.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3