Disentangling CO Chemistry in a Protoplanetary Disk Using Explanatory Machine-learning Techniques

Author:

Diop AminaORCID,Cleeves L. IlsedoreORCID,Anderson Dana E.ORCID,Pegues JamilaORCID,Plunkett AdeleORCID

Abstract

Abstract Molecular abundances in protoplanetary disks are highly sensitive to the local physical conditions, including gas temperature, gas density, radiation field, and dust properties. Often multiple factors are intertwined, impacting the abundances of both simple and complex species. We present a new approach to understanding these chemical and physical interdependencies using machine learning. Specifically, we explore the case of CO modeled under the conditions of a generic disk and build an explanatory regression model to study the dependence of CO spatial density on the gas density, gas temperature, cosmic-ray ionization rate, X-ray ionization rate, and UV flux. Our findings indicate that combinations of parameters play a surprisingly powerful role in regulating CO abundance compared to any singular physical parameter. Moreover, in general we find the conditions in the disk are destructive toward CO. CO depletion is further enhanced in an increased cosmic-ray environment and in disks with higher initial C/O ratios. These dependencies uncovered by our new approach are consistent with previous studies, which are more modeling intensive and computationally expensive. Our work thus shows that machine learning can be a powerful tool not only for creating efficient predictive models, but also for enabling a deeper understanding of complex chemical processes.

Funder

John F. Angle Fellowship

Research Corporation for Science Advancement

David and Lucile Packard Foundation

NASA

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3