Detection of Accretion Shelves Out to the Virial Radius of a Low-mass Galaxy with JWST

Author:

Conroy CharlieORCID,Johnson Benjamin D.,van Dokkum Pieter,Deason Alis,Tacchella Sandro,Belli Sirio,Bowman William P.,Naidu Rohan P.,Park Minjung,Abraham Roberto,Emami Razieh

Abstract

Abstract We report the serendipitous discovery of an extended stellar halo surrounding the low-mass galaxy Ark 227 (M * = 5 × 109 M ; d = 35 Mpc) in deep JWST NIRCam imaging from the Blue Jay Survey. The F200W–F444W color provides robust star–galaxy separation, enabling the identification of stars at very low density. By combining resolved stars at large galactocentric distances with diffuse emission from NIRCam and Dragonfly imaging at smaller distances, we trace the surface-brightness and color profiles of this galaxy over the entire extent of its predicted dark matter halo, from 0.1 to 100 kpc. Controlled N-body simulations have predicted that minor mergers create “accretion shelves” in the surface-brightness profile at large radius. We observe such a feature in Ark 227 at 10–20 kpc, which, according to models, could be caused by a merger with total mass ratio 1:10. The metallicity declines over this radial range, further supporting the minor merger scenario. There is tentative evidence of a second shelf at μ V ≈ 35 mag arcsec−2 extending from 50 to 100 kpc, along with a corresponding drop in metallicity. The stellar mass in this outermost envelope is ≈107 M . These results suggest that Ark 227 experienced multiple mergers with a spectrum of lower-mass galaxies—a scenario that is broadly consistent with the hierarchical growth of structure in a cold-dark-matter-dominated universe. Finally, we identify an ultra-faint dwarf associated with Ark 227 with M * ≈ 105 M and μ V,e = 28.1 mag arcsec−2, demonstrating that JWST is capable of detecting very-low-mass dwarfs to distances of at least ∼30 Mpc.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3