Abstract
Abstract
Utilizing the unprecedented high-resolution Magnetospheric Multiscale mission data from 2015 September to 2017 December, we perform a statistical study of electron vortexes in the turbulent terrestrial magnetosheath. On the whole, 506 electron vortex events are successfully selected. Electron vortexes can occur at four known types of magnetic structures, including 78, 42, 26, and 39 electron vortexes observed during the crossings of the current sheets, magnetic holes, magnetic peaks, and flux ropes, respectively. Except for the four types of structures, the rest of the electron vortexes are in the “Others” category, defined as unknown structures. The electron vortexes mainly occur in the subsolar region, with only a few in the flank region. The total occurrence rate of all electron vortexes is 4.86 hr–1, with, on average, 3.65 events hr−1 in the X-Y plane and 3.26 events hr−1 in the X-Z plane. The durations of most of the electron vortexes concentrate within 0.5–1.5 s and are 1.09 s on average. The electron vortexes are ion-scale structures owing to the average scale of 2.05 ion gyroradius. In addition, the means, medians, and maxima of the energy dissipation J · E′ in the electron vortexes are almost positive, implying that the electron vortex may be a potential coherent structure or channel for turbulent energy dissipation. All these results reveal the statistical characteristics of electron vortexes in the magnetosheath and improve our understanding of energy dissipation in astrophysical and space plasmas.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献