Magnetohydrodynamic Modeling Investigations of Kelvin–Helmholtz Instability and Associated Magnetosonic Wave Emission along Coronal Mass Ejections

Author:

Butler SaraORCID,Chen WeiruORCID,Turkakin HavaORCID

Abstract

Abstract Previous studies have suggested that the Kelvin–Helmholtz instability (KHI) and magnetohydrodynamic (MHD) wave emissions via the KHI along various shear flow boundaries in a solar–terrestrial environment may be possible. We expand upon these previous studies to investigate the linear and nonlinear evolution of the KHI and emission of MHD waves along the boundaries of coronal mass ejections (CMEs). Our results demonstrate that the KHI and MHD wave emission due to the KHI are possible along the CME boundaries during the KHI development. We found that magnetic field orientation in the region outside of the CME has strong effects on the strength of MHD wave emission. While a smaller parallel component of the magnetic field resulted in larger growth rates in the KHI development, a larger parallel component of the magnetic field resulted in stronger MHD wave emissions. For all cases we investigated, we identified emitted waves to be fast MHD waves. We suggest that these emitted MHD waves may be able to carry available kinetic energy from the CME flow to the outside of the CME, thereby contributing to solar coronal heating via energy dissipation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3