A Multiparameter Degeneracy in Microlensing Events with Extreme Finite Source Effects

Author:

Johnson Samson A.ORCID,Penny Matthew T.ORCID,Gaudi B. ScottORCID

Abstract

Abstract For microlenses with sufficiently low mass, the angular radius of the source star can be much larger than the angular Einstein ring radius of the lens. For such extreme finite source effect (EFSE) events, finite source effects dominate throughout the duration of the event. Here, we demonstrate and explore a continuous degeneracy between multiple parameters of such EFSE events. The first component in the degeneracy arises from the fact that the directly observable peak change of the flux depends on both the ratio of the angular source radius to the angular Einstein ring radius and the fraction of the baseline flux that is attributable to the lensed source star. The second component arises because the directly observable duration of the event depends on both the impact parameter of the event and the relative lens-source proper motion. These two pairwise degeneracies become coupled when the detailed morphology of the light curve is considered, especially when including a limb-darkening profile of the source star. We derive these degeneracies mathematically through analytic approximations and investigate them further numerically with no approximations. We explore the likely physical situations in which these mathematical degeneracies may be realized and potentially broken. As more and more low-mass lensing events (with ever decreasing Einstein ring radii) are detected with improving precision and increasing cadence from microlensing surveys, one can expect that more of these EFSE events will be discovered. In particular, the detection of EFSE microlensing events could increase dramatically with the Roman Space Telescope Galactic Bulge Time Domain Survey.

Funder

NASA ∣ Goddard Space Flight Center

Louisiana Board of Regents

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerically studying the degeneracy problem in extreme finite-source microlensing events;Monthly Notices of the Royal Astronomical Society;2023-03-31

2. Microlensing due to free-floating moon-planet systems;Monthly Notices of the Royal Astronomical Society;2023-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3