Three-dimensional Reconstruction of Weak-lensing Mass Maps with a Sparsity Prior. I. Cluster Detection

Author:

Li XiangchongORCID,Yoshida NaokiORCID,Oguri MasamuneORCID,Ikeda ShiroORCID,Luo WentaoORCID

Abstract

Abstract We propose a novel method to reconstruct high-resolution three-dimensional mass maps using data from photometric weak-lensing surveys. We apply an adaptive LASSO algorithm to perform a sparsity-based reconstruction on the assumption that the underlying cosmic density field is represented by a sum of Navarro–Frenk–White halos. We generate realistic mock galaxy shear catalogs by considering the shear distortions from isolated halos for the configurations matched to the Subaru Hyper Suprime-Cam Survey with its photometric redshift estimates. We show that the adaptive method significantly reduces line-of-sight smearing that is caused by the correlation between the lensing kernels at different redshifts. Lensing clusters with lower mass limits of 1014.0 h−1 M , 1014.7 h−1 M , 1015.0 h−1 M can be detected with 1.5σ confidence at the low (z < 0.3), median (0.3 ≤ z < 0.6), and high (0.6 ≤ z < 0.85) redshifts, respectively, with an average false detection rate of 0.022 deg−2. The estimated redshifts of the detected clusters are systematically lower than the true values by Δz ∼ 0.03 for halos at z ≤ 0.4, but the relative redshift bias is below 0.5% for clusters at 0.4 < z ≤ 0.85. The standard deviation of the redshift estimation is 0.092. Our method enables direct three-dimensional cluster detection with accurate redshift estimates.

Funder

MEXT ∣ Japan Society for the Promotion of Science

MEXT ∣ JST ∣ Core Research for Evolutional Science and Technology

MEXT ∣ Japan Science and Technology Agency

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward an Optimal Reconstruction of the Shear Field with PDF-folding;The Astrophysical Journal;2023-09-01

2. Cosmic Density Field Reconstruction with a Sparsity Prior Using Images of Distant Galaxies;Big-Data-Analytics in Astronomy, Science, and Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3