Kilonova Spectral Inverse Modelling with Simulation-based Inference: An Amortized Neural Posterior Estimation Analysis

Author:

Darc P.ORCID,Bom C. R.ORCID,Fraga B.ORCID,Kilpatrick C. D.ORCID

Abstract

Abstract Kilonovae represent a category of astrophysical transients, identifiable as the electromagnetic (EM) counterparts associated with the coalescence events of binary systems comprising neutron stars and neutron star–black hole pairs. They act as probes for heavy-element nucleosynthesis in astrophysical environments. These studies rely on an inference of the physical parameters (e.g., ejecta mass, velocity, composition) that describe kilonovae-based on EM observations. This is a complex inverse problem typically addressed with sampling-based methods such as Markov Chain Monte Carlo or nested sampling algorithms. However, repeated inferences can be computationally expensive, due to the sequential nature of these methods. This poses a significant challenge to ensuring the reliability and statistical validity of the posterior approximations and, thus, the inferred kilonova parameters themselves. We present a novel approach: simulation-based inference using simulations produced by KilonovaNet. Our method employs an ensemble of amortized neural posterior estimation (ANPE) with an embedding network to directly predict posterior distributions from simulated spectral energy distributions. We take advantage of the quasi-instantaneous inference time of ANPE to demonstrate the reliability of our posterior approximations using diagnostics tools, including coverage diagnostic and posterior predictive checks. We further test our model with real observations from AT 2017gfo, the only kilonova with multimessenger data, demonstrating agreement with previous likelihood-based methods while reducing inference time down to a few seconds. The inference results produced by ANPE appear to be conservative and reliable, paving the way for testable and more efficient kilonova parameter inference.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Financiadora de Estudos e Projetos

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3