Galaxies at a Cosmic Ray Eddington Limit

Author:

Heintz EvanORCID,Zweibel Ellen G.ORCID

Abstract

Abstract Cosmic rays have been shown to be extremely important in the dynamics of diffuse gas in galaxies, helping to maintain hydrostatic equilibrium, and serving as a regulating force in star formation. In this paper, we address the influence of cosmic rays on galaxies by re-examining the theory of a cosmic ray Eddington limit, first proposed by Socrates et al. and elaborated upon by Crocker et al. and Huang & Davis. A cosmic ray Eddington limit represents a maximum cosmic ray energy density above which the interstellar gas cannot be in hydrostatic equilibrium, resulting in a wind. In this paper, we continue to explore the idea of a cosmic ray Eddington limit by introducing a general framework that accounts for the circumgalactic environment and applying it to five galaxies that we believe to be a good representative sample of the star-forming galaxy population, using different cosmic ray transport models to determine what gives each galaxy the best chance to reach this limit. We show that, while an Eddington limit for cosmic rays does exist, for our five galaxies, the limit either falls at star formation rates that are much larger or gas densities that are much lower than each galaxy’s measured values. This suggests that cosmic ray pressure is not the main factor limiting the luminosity of starburst galaxies.

Funder

National Science Foundation

University of Wisconsin–Madison

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The high energy X-ray probe (HEX-P): Galactic PeVatrons, star clusters, superbubbles, microquasar jets, and gamma-ray binaries;Frontiers in Astronomy and Space Sciences;2023-12-22

2. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

3. Antistars as possible sources of antihelium cosmic rays;Journal of Cosmology and Astroparticle Physics;2023-08-01

4. Cosmic Ray Processes in Galactic Ecosystems;Galaxies;2023-07-16

5. AGN cool feedback and analogy with X-ray binaries: from radiation pressure to cosmic ray-driven outflows;Monthly Notices of the Royal Astronomical Society;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3