Quantifying Chemical and Kinematical Properties of Galactic Disks

Author:

Hu GuozhenORCID,Shao ZhengyiORCID

Abstract

Abstract We aim to quantify the chemical and kinematical properties of Galactic disks with a sample of 119,558 giant stars having abundances and 3D velocities taken or derived from the APOGEE DR17 and Gaia EDR3 catalogs. A Gaussian mixture model is employed to distinguish the high-α and low-α sequences along the metallicity by simultaneously using chemical and kinematical data. Four disk components are identified and quantified; they are named the hαmp, hαmr, lαmp, and lαmr disks and correspond to the high or low, and metal-poor or metal-rich properties. Combined with the spatial and stellar-age information, we confirm that they are well interpreted by the two-infall formation model. The first infall of turbulent gas quickly forms the hot and thick hαmp disk with consequent thinner hαmr and lαmr disks. Then the second gas accretion forms a thinner and outermost lαmp disk. We find that the inside-out and upside-down scenario does not only satisfy the overall Galactic disk formation of these two major episodes but is also presented in the formation sequence of the three inner disks. Importantly, we reveal the inverse age–[M/H] trend of the lαmr disk, which means its younger stars are more metal-poor, indicating that the rejuvenated gas from the second accretion gradually dominates later star formation. Meanwhile, the recently formed stars converge to [M/H] ∼ −0.1 dex, demonstrating a sufficient mixture of gas from two infalls.

Funder

MOST ∣ National Key Research and Development Program of China

NSFC ∣ Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3