X-Ray/UVOIR Frequency-resolved Time Lag Analysis of Mrk 335 Reveals Accretion Disk Reprocessing

Author:

Lewin CollinORCID,Kara ErinORCID,Cackett Edward M.ORCID,Wilkins DanORCID,Panagiotou Christos,García Javier A.ORCID,Gelbord JonathanORCID

Abstract

Abstract UV and optical continuum reverberation mapping is a powerful tool for probing the accretion disk and inner broad-line region. However, recent reverberation mapping campaigns in the X-ray, UV, and optical have found lags consistently longer than those expected from the standard disk reprocessing picture. The largest discrepancy to date was recently reported in Mrk 335, where UV/optical lags are up to 12 times longer than expected. Here, we perform a frequency-resolved time lag analysis of Mrk 335, using Gaussian processes to account for irregular sampling. For the first time, we compare the Fourier frequency-resolved lags directly to those computed using the popular interpolated cross-correlation function method applied to both the original and detrended light curves. We show that the anticipated disk reverberation lags are recovered by the Fourier lags when zeroing in on the short-timescale variability. This suggests that a separate variability component is present on long timescales. If this separate component is modeled as reverberation from another region beyond the accretion disk, we constrain a size scale of roughly 15 lt-days from the central black hole. This is consistent with the size of the broad-line region inferred from Hβ reverberation lags. We also find tentative evidence for a soft X-ray lag, which we propose may be due to light travel time delays between the hard X-ray corona and distant photoionized gas that dominates the soft X-ray spectrum below 2 keV.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3