Global Mapping of Surface Composition on an Exo-Earth Using Sparse Modeling

Author:

Kuwata AtsukiORCID,Kawahara HajimeORCID,Aizawa MasatakaORCID,Kotani TakayukiORCID,Tamura MotohideORCID

Abstract

Abstract The time series of light reflected from exoplanets by future direct imaging can provide spatial information with respect to the planetary surface. We apply sparse modeling to the retrieval method that disentangles the spatial and spectral information from multiband reflected light curves termed as spin–orbit unmixing. We use the 1-norm and the total squared variation norm as regularization terms for the surface distribution. Applying our technique to a toy model of cloudless Earth, we show that our method can infer sparse and continuous surface distributions and also unmixed spectra without prior knowledge of the planet surface. We also apply the technique to the real Earth data as observed by DSCOVR/EPIC. We determined the representative components that can be interpreted as cloud and ocean. Additionally, we found two components that resembled the distribution of land. One of the components captures the Sahara Desert, and the other roughly corresponds to vegetation, although their spectra are still contaminated by clouds. Sparse modeling significantly improves the geographic retrieval, in particular, of clouds and leads to higher resolutions for other components when compared with spin–orbit unmixing using Tikhonov regularization.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3