Density Turbulence and the Angular Broadening of Outer Heliospheric Radio Sources at High Latitudes and in the Ecliptic Plane

Author:

Tasnim SamiraORCID,Zank Gary. P.ORCID,Cairns Iver H.ORCID,Adhikari L.ORCID

Abstract

Abstract Density irregularities are responsible for the scattering of radio waves in the solar wind and astrophysical plasmas. These irregularities significantly affect the inferred physical properties of radio sources, such as size, direction, and intensity. We present here a theory of angular broadening due to the scattering of radio waves by density irregularities that improves the existing formalism used to investigate radio wave scattering in the outer heliosphere and the very local interstellar medium. The model includes an inner scale and both latitudinal and radial dependencies for the density fluctuation spectra and propagation paths for the radiation both near and out of the ecliptic plane. Based on the pickup-ion-mediated solar wind model (PUI model) of Zank et al., we estimate the turbulence and solar wind quantities for the high-latitude fast solar wind. The predictions include the density variance, inner/dissipation scale, velocity correlation length, mean magnetic field, and proton temperature. The density turbulence amplitude is estimated in two ways. First, a simple scaling technique is used to extend the theoretical predictions of the PUI model for the high-latitude wind beyond the heliospheric termination shock. Second, the solar wind and turbulence quantities are calculated near the ecliptic plane using plasma and magnetometer data from the Voyager 2 spacecraft over the period 1977–2018. Based on the turbulence models and observations, we calculate the scattering angle of the radio sources in the high-latitude and near-ecliptic wind. Finally, we compare the numerical results with the analytic predictions from Cairns and Armstrong et al. and the observed source sizes.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3