Reconstructing Masses of Merging Neutron Stars from Stellar r-process Abundance Signatures

Author:

Holmbeck Erika M.ORCID,Frebel AnnaORCID,McLaughlin G. C.ORCID,Surman RebeccaORCID,Fernández RodrigoORCID,Metzger Brian D.ORCID,Mumpower Matthew R.ORCID,Sprouse T. M.ORCID

Abstract

Abstract Neutron star mergers (NSMs) are promising astrophysical sites for the rapid neutron-capture (“r”) process, but can their integrated yields explain the majority of heavy-element material in the Galaxy? One method to address this question implements a forward approach that propagates NSM rates and yields along with stellar formation rates and compares those results with observed chemical abundances of r-process-rich, metal-poor stars. In this work, we take the inverse approach by utilizing r-process-element abundance ratios of metal-poor stars as input to reconstruct the properties—especially the masses—of their neutron star (NS) binary progenitors. This novel analysis provides an independent avenue for studying the population of the original NS binary systems that merged and produced the r-process material now incorporated in Galactic metal-poor halo stars. We use ratios of elements typically associated with the limited-r-process and the actinide region to those in the lanthanide region (i.e., Zr/Dy and Th/Dy) to probe the NS masses of the progenitor merger. We find that NSMs can account for all r-process material in metal-poor stars that display r-process signatures, while simultaneously reproducing the present-day distribution of double-NS systems. Notably, with our model assumptions and the studied stellar sample, we postulate that the most r-process enhanced stars (the r–II stars) on their own would require progenitor NSMs of asymmetric systems that are distinctly different from present ones in the Galaxy. We also explore variations to the model and find that the predicted degree of asymmetry is most sensitive to the electron fraction of the remnant disk wind.

Funder

U.S. Department of Energy

DOE ∣ National Nuclear Security Administration

DOE ∣ NNSA ∣ Laboratory Directed Research and Development

National Science Foundation

Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3