The Source Locations of Major Flares and CMEs in Emerging Active Regions

Author:

Liu LijuanORCID,Wang YumingORCID,Zhou ZhenjunORCID,Cui JunORCID

Abstract

Abstract Major flares and coronal mass ejections (CMEs) tend to originate from compact polarity inversion lines (PILs) in solar active regions (ARs). Recently, a scenario named “collisional shearing” was proposed by Chintzoglou et al. to explain the phenomenon, which suggests that the collision between different emerging bipoles is able to form a compact PIL, driving the shearing and flux cancellation that are responsible for the subsequent large activities. In this work, by tracking the evolution of 19 emerging ARs from their birth until they produce the first major flares or CMEs, we investigated the source PILs of the activities, i.e., the active PILs, to explore the generality of “collisional shearing.” We find that none of the active PILs is the self PIL (sPIL) of a single bipole. We further find that 11 eruptions originate from the collisional PILs (cPILs) formed due to the collision between different bipoles, six from the conjoined systems of sPIL and cPIL, and two from the conjoined systems of sPIL and ePIL (external PIL between the AR and the nearby pre-existing polarities). Collision accompanied by shearing and flux cancellation is found to develop at all PILs prior to the eruptions, with 84% (16/19) cases having collisional length longer than 18 Mm. Moreover, we find that the magnitude of the flares is positively correlated with the collisional length of the active PILs, indicating that the more intense activities tend to originate from PILs with more severe collisions. The results suggest that “collisional shearing,” i.e., bipole–bipole interaction during the flux emergence, is a common process in driving the major activities in emerging ARs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3