Magnetic Field of Gas Giant Exoplanets and Its Influence on the Retention of Their Exomoons

Author:

Wei 魏 Xing 星ORCID,Lin 林 D. N. C. 潮ORCID

Abstract

Abstract We study the magnetic and tidal interactions of a gas-giant exoplanet with its host star and with its exomoons, and focus on their retention. We briefly revisit the scaling law for planetary dynamo in terms of its mass, radius, and luminosity. Based on the virial theorem, we construct an evolution law for planetary magnetic field and find that its initial entropy is important for the field evolution of a high-mass planet. We estimate the magnetic torques on orbit arising from the star–planet and planet–moon magnetic interactions, and find that it can compensate tidal torques and bypass frequency valleys where dynamical-tide response is ineffective. For exomoon’s retention, we consider two situations. In the presence of a circumplanetary disk (CPD), by comparison between CPD’s inner and outer radii, we find that planets with too strong magnetic fields or too small distance from its host star tend not to host exomoons. During the subsequent CPD-free evolution, we find, by comparison between a planet’s spin-down and a moon’s migration timescales, that hot Jupiters with periods of several days are unlikely to retain large exomoons, albeit they could be surrounded by rings from the debris of tidally disrupted moons. In contrast, moons, if formed around warm or cold Jupiters, can be preserved. Finally, we estimate the radio power and flux density due to the star–planet and planet–moon magnetic interactions and give the upper limit of detection distance by FAST.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Earth-sized Planet on the Verge of Tidal Disruption;The Astronomical Journal;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3