Warm Absorbers in the Radiation-driven Fountain Model of Low-mass Active Galactic Nuclei

Author:

Ogawa ShojiORCID,Ueda YoshihiroORCID,Wada KeiichiORCID,Mizumoto MisakiORCID

Abstract

Abstract To investigate the origins of the warm absorbers in active galactic nuclei (AGNs), we study the ionization-state structure of the radiation-driven fountain model in a low-mass AGN and calculate the predicted X-ray spectra utilizing the spectral synthesis code Cloudy. The spectra show many absorption and emission line features originating in the outflowing ionized gas. The O viii 0.654 keV lines are produced mainly in the polar region much closer to the supermassive black hole than the optical narrow-line regions. The absorption measure distribution of the ionization parameter (ξ) at a low inclination spreads over 4 orders of magnitude in ξ, indicating the multiphase ionization structure of the outflow, as actually observed in many type 1 AGNs. We compare our simulated spectra with the high energy resolution spectrum of the narrow-line Seyfert 1 galaxy NGC 4051. The model reproduces slowly outflowing (a few hundred kilometers per second) warm absorbers. However, the faster components with a few thousand kilometers per second observed in NGC 4051 are not reproduced. The simulation also underproduces the intensity and width of the O viii 0.654 keV line. These results suggest that the ionized gas launched from subparsec or smaller regions inside the torus, which is not included in the current fountain model, must be an important ingredient of the warm absorbers with a few thousand kilometers per second. The model also consistently explains the Chandra/HETG spectrum of the Seyfert 2 galaxy Circinus.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3