Local Regimes of Turbulence in 3D Magnetic Reconnection

Author:

Lapenta G.ORCID,Pucci F.,Goldman M. V.,Newman D. L.

Abstract

Abstract The process of magnetic reconnection when studied in nature or when modeled in 3D simulations differs in one key way from the standard 2D paradigmatic cartoon: it is accompanied by many fluctuations in the electromagnetic fields and plasma properties. We developed a diagnostics to study the spectrum of fluctuations in the various regions around a reconnection site. We define the regions in terms of the local value of the flux function that determines the distance from the reconnection site, with positive values in the outflow and negative values in the inflow. We find that fluctuations belong to two very different regimes depending on the local plasma beta (defined as the ratio of plasma and magnetic pressures). The first regime develops in the reconnection outflows where beta is high and it is characterized by a strong link between plasma and electromagnetic fluctuations, leading to momentum and energy exchanges via anomalous viscosity and resistivity. But there is a second, low-beta regime: it develops in the inflow and in the region around the separatrix surfaces, including the reconnection electron diffusion region itself. It is remarkable that this low-beta plasma, where the magnetic pressure dominates, remains laminar even though the electromagnetic fields are turbulent.

Funder

EC

NASA

DOE

PRACE

FWO

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3