Effects of Fully Relativistic Condition on Electron Cyclotron Maser Emission

Author:

Zhang Lijie,Tang Jianfei,Shen JinhuaORCID,Wu DejinORCID,Chen LingORCID

Abstract

Abstract The electron cyclotron maser (ECM) instability is a very important nonthermal radiation mechanism. It has been developed by proposing various electron distribution functions as well as the relativistic resonance condition, called the semirelativistic correction. Taking account of the relativistic effects of both the velocity distribution of energetic electrons and the resonance condition, called the fully relativistic correction, the present paper investigates the ECM instability driven by a power-law electron distribution with a low-energy cutoff. The results show that (1) both in the semirelativistic and fully relativistic cases, the growth rate and relative frequency bandwidth of ordinary (O) and extraordinary (X) modes show a positive correlation with cutoff energy E c , i.e., the peak frequency decreases with increasing E c ; (2) the peak frequency ratio (H peak/F peak) of the harmonic and fundamental waves is always ∼2; (3) compared with the semirelativistic case, the fully relativistic case has a larger growth rate (for both the O and X mode) and a smaller peak frequency (only for the O mode) for energy > 50 keV, and there is almost no difference at lower energy for the two cases; (4) the peak frequency of the X1 mode can be higher than its cutoff frequency in a strongly magnetized plasma, implying that the X1 mode emission may escape more easily for a higher E c and stronger magnetic field. These results can be helpful for us to understand better the physics of radio bursts from the Sun and other objects.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3