Energy Deposition by Cosmic Rays in the Molecular Cloud Using GEANT4 Code and Voyager I Data

Author:

Pazianotto Mauricio TizzianiORCID,Pilling SergioORCID,Molina Jose Manuel QuesadaORCID,Federico Claudio AntonioORCID

Abstract

Abstract Molecular clouds (MCs) are exposed to Galactic and extragalactic cosmic rays (CR) that trigger several physical and physicochemical changes, including gas and grain heating and molecular destruction and formation. Here we present a theoretical model describing the energy delivered by CRs, composed of protons, alphas, and electrons taken from Voyager I measurements, into a typical MC with 5400 M (composed mainly of H with a density law of r −1.2) and size around 1 × 106 au. The calculation was performed employing the Monte Carlo toolkit GEANT4 to obtain the energy deposition per mass from several types of secondary particles (considering nuclear and hadron physics). The results indicate that incoming protons contribute to most of the energy delivered in the MC in all regions (maximum ∼230 MeV g−1 s−1 at outer regions of the cloud). Secondary electrons are the second most important component for energy deposition in almost all layers of the MC and can deliver an energy rate of ∼130 MeV g−1 s−1 in the outer region of the MC. Other cascade particles have their major energy delivery in the central and denser core of the MC. From a temperature model (considering CR data from Voyager I), we observed (i) a small bump in temperature at the distance of 3 × 103–2 × 104 au from the center, (ii) a rapid temperature decrease (roughly 7 K) between the outer layer and the second most outer layer, and (iii) that, at a distance of 5 × 104 au (Av > 10), the gas temperature of the MC is below 15 K.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

MCTI ∣ Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministerio de Ciencia, Innovación y Universidades

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3