The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch*

Author:

Freedman Wendy L.ORCID,Madore Barry F.ORCID,Hatt DylanORCID,Hoyt Taylor J.ORCID,Jang In SungORCID,Beaton Rachael L.ORCID,Burns Christopher R.ORCID,Lee Myung GyoonORCID,Monson Andrew J.,Neeley Jillian R.ORCID,Phillips M. M.ORCID,Rich Jeffrey A.ORCID,Seibert MarkORCID

Abstract

Abstract We present a new and independent determination of the local value of the Hubble constant based on a calibration of the tip of the red giant branch (TRGB) applied to Type Ia supernovae (SNe Ia). We find a value of H 0 = 69.8 ± 0.8 (±1.1% stat) ± 1.7 (±2.4% sys) km s−1 Mpc−1. The TRGB method is both precise and accurate and is parallel to but independent of the Cepheid distance scale. Our value sits midway in the range defined by the current Hubble tension. It agrees at the 1.2σ level with that of the Planck Collaboration et al. estimate and at the 1.7σ level with the Hubble Space Telescope (HST) SHoES measurement of H 0 based on the Cepheid distance scale. The TRGB distances have been measured using deep HST Advanced Camera for Surveys imaging of galaxy halos. The zero-point of the TRGB calibration is set with a distance modulus to the Large Magellanic Cloud of 18.477 ± 0.004 (stat) ± 0.020 (sys) mag, based on measurement of 20 late-type detached eclipsing binary stars, combined with an HST parallax calibration of a 3.6 μm Cepheid Leavitt law based on Spitzer observations. We anchor the TRGB distances to galaxies that extend our measurement into the Hubble flow using the recently completed Carnegie Supernova Project I ( CSP-I ) sample containing about 100 well-observed SNe Ia . There are several advantages of halo TRGB distance measurements relative to Cepheid variables; these include low halo reddening, minimal effects of crowding or blending of the photometry, only a shallow (calibrated) sensitivity to metallicity in the I band, and no need for multiple epochs of observations or concerns of different slopes with period. In addition, the host masses of our TRGB host-galaxy sample are higher, on average, than those of the Cepheid sample, better matching the range of host-galaxy masses in the CSP-I distant sample and reducing potential systematic effects in the SNe Ia measurements.

Funder

Wendy L. Freedman

Barry F. Madore

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 562 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3