Broadband X-Ray Timing and Spectral Characteristics of the Accretion-powered Millisecond X-Ray Pulsar MAXIJ1816-195

Author:

Li ZhaoshengORCID,Kuiper LucienORCID,Ge MingyuORCID,Falanga MaurizioORCID,Poutanen JuriORCID,Ji LongORCID,Pan Yuanyue,Huang Yue,Xu RenxinORCID,Song LimingORCID,Qu JinluORCID,Zhang Shu,Lu FangjunORCID,Zhang Shuang-NanORCID

Abstract

Abstract We studied the broadband X-ray timing and spectral behaviors of the newly confirmed accreting millisecond X-ray pulsar MAXI J1816−195 during its 2022 outburst. We used data from the Insight-HXMT Medium Energy (ME) and High Energy (HE) telescopes, NICER, and NuSTAR that cover the energy range between 0.8 and 210 keV. A coherent timing analysis of solely the Insight-HXMT HE data across the full outburst revealed a complex behavior of the timing residuals, also prominently visible in the independent Insight-HXMT ME and NICER data, particularly at the rising part of the outburst and at the very end in the NICER data. Therefore, we broke down the full outburst into a (noisy) rising part, covering only about five days, from MJD 59737.0 to 59741.9, and a decaying part, lasting for 19 days across MJD 59741.9–59760.6. Fitting for the decaying part, a timing model including a frequency ν and frequency time derivative ν ̇ component yielded a value of (+9.0 ± 2.1) × 10−14 Hz s−1 for ν ̇ , which could be interpreted as a spinup under our model assumptions. We detected X-ray pulsations up to ∼95 keV in a combination of Insight-HXMT HE observations. The pulse profiles were quite stable over the whole outburst and could be well described by a truncated Fourier series using two harmonics, the fundamental and the first overtone. Both components kept alignment in the range 0.8–64 keV. The joint and time-averaged NICER and Insight-HXMT spectra in the energy range 1–150 keV were well fitted by the absorbed Comptonization model compps plus disk blackbody with two additional Gaussian components. Using the bolometric flux and spinup values both evaluated during the decay phase, we determined a magnetic field strength of (0.2–2) × 108 G for MAXI J1816−195.

Funder

MOST ∣ National Natural Science Foundation of China

Academy of Finland

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3