Effective Drag in Rotating, Poorly Conducting Plasma Turbulence

Author:

Benavides Santiago J.ORCID,Burns Keaton J.ORCID,Gallet BasileORCID,Flierl Glenn R.ORCID

Abstract

Abstract Despite the increasing sophistication of numerical models of hot Jupiter atmospheres, the large timescale separation required in simulating the wide range in electrical conductivity between the dayside and nightside has made it difficult to run fully consistent magnetohydrodynamic (MHD) models. This has led to many studies that resort to drag parameterizations of MHD. In this study, we revisit the question of the Lorentz force as an effective drag by running a series of direct numerical simulations of a weakly rotating, poorly conducting flow in the presence of a misaligned, strong background magnetic field. We find that the drag parameterization fails once the timescale associated with the Lorentz force becomes shorter than the dynamical timescale in the system, beyond which the effective drag coefficient remains roughly constant, despite orders-of-magnitude variation in the Lorentz (magnetic) timescale. We offer an improvement to the drag parameterization by considering the relevant asymptotic limit of low conductivity and strong background magnetic field, known as the quasi-static MHD approximation of the Lorentz force. This approximation removes the fast timescale associated with magnetic diffusion, but retains a more complex version of the Lorentz force, which could be utilized in future numerical models of hot Jupiter atmospheric circulation.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3