Predicting the Geoeffectiveness of CMEs Using Machine Learning

Author:

Pricopi Andreea-ClaraORCID,Paraschiv Alin RazvanORCID,Besliu-Ionescu DianaORCID,Marginean Anca-NicoletaORCID

Abstract

Abstract Coronal mass ejections (CMEs) are the most geoeffective space weather phenomena, being associated with large geomagnetic storms, and having the potential to cause disturbances to telecommunications, satellite network disruptions, and power grid damage and failures. Thus, considering these storms’ potential effects on human activities, accurate forecasts of the geoeffectiveness of CMEs are paramount. This work focuses on experimenting with different machine-learning methods trained on white-light coronagraph data sets of close-to-Sun CMEs, to estimate whether such a newly erupting ejection has the potential to induce geomagnetic activity. We developed binary classification models using logistic regression, k-nearest neighbors, support vector machines, feed-forward artificial neural networks, and ensemble models. At this time, we limited our forecast to exclusively use solar onset parameters, to ensure extended warning times. We discuss the main challenges of this task, namely, the extreme imbalance between the number of geoeffective and ineffective events in our data set, along with their numerous similarities and the limited number of available variables. We show that even in such conditions adequate hit rates can be achieved with these models.

Funder

Technical University of Cluj-Napoca Base funds

National Center for Atmospheric Research

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Do Halo CMEs Tell Us about Solar Cycle 25?;The Astrophysical Journal Letters;2023-07-01

2. Propagation of coronal mass ejections from the Sun to the Earth;Journal of Astrophysics and Astronomy;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3