Transport Equation of Kappa Distributions in the Heliosphere

Author:

Livadiotis G.ORCID,McComas D. J.ORCID

Abstract

Abstract In this paper, we develop the transport equation of kappa, the fundamental thermodynamic parameter that labels kappa distributions of particle velocities. Using the recently developed concept of entropy defect, we are able to formulate the transport equation of kappa as a function of a general, positive or negative, rate of entropy change. Then, we derive the particular case of exchanging plasma ions with low-dimensionality, newly born pickup protons, which interact and decrease the entropy of the flow of otherwise kappa-distributed plasma protons. Finally, we apply the transport equation of kappa to the solar wind plasma protons, which leads to the radial profile of kappa values, as well as the evolution of the kappa distributions through the heliosphere. The results show that the solar wind kappa decreases with increasing heliocentric distance, corresponding to plasmas residing in stationary states far from classical thermal equilibrium. Moreover, in the outer heliosphere and the heliosheath, kappa reaches its lowest values and is spread across the far-equilibrium region of 1.5 < κ < 2.5, which coincides with independent observations provided by NASA’s Interstellar Boundary Explorer mission.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropy defect: Algebra and thermodynamics;Europhysics Letters;2023-10-01

2. Connection between Polytropic Index and Heating;The Astrophysical Journal;2023-10-01

3. Extensive entropy: the case of zero entropy defect;Physica Scripta;2023-09-26

4. Entropy defect in thermodynamics;Scientific Reports;2023-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3