The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). VIII. Dynamics of Embedded Dense Cores

Author:

Li ShanghuoORCID,Sanhueza PatricioORCID,Zhang QizhouORCID,Guido GarayORCID,Sabatini GiovanniORCID,Morii KahoORCID,Lu XingORCID,Tafoya DanielORCID,Nakamura FumitakaORCID,Izumi NatsukoORCID,Tatematsu Ken’ichiORCID,Li FeiORCID

Abstract

Abstract We present dynamical properties of 294 cores embedded in twelve IRDCs observed as part of the ASHES Survey. Protostellar cores have higher gas masses, surface densities, column densities, and volume densities than prestellar cores, indicating core mass growth from the prestellar to the protostellar phase. We find that ∼80% of cores with virial parameter (α) measurements are gravitationally bound (α < 2). We also find an anticorrelation between the mass and the virial parameter of cores, with massive cores having on average lower virial parameters. Protostellar cores are more gravitationally bound than prestellar cores, with an average virial parameter of 1.2 and 1.5, respectively. The observed nonthermal velocity dispersion (from N2D+ or DCO+) is consistent with simulations in which turbulence is continuously injected, whereas the core-to-core velocity dispersion is neither in agreement with driven nor decaying turbulence simulations. We find a not significant increment in the line velocity dispersion from prestellar to protostellar cores, suggesting that the dense gas within the core traced by these deuterated molecules is not yet severely affected by turbulence injected from outflow activity at the early evolutionary stages traced in ASHES. The most massive cores are strongly self-gravitating and have greater surface density, Mach number, and velocity dispersion than cores with lower masses. Dense cores do not have significant velocity shifts relative to their low-density envelopes, suggesting that dense cores are comoving with their envelopes. We conclude that the observed core properties are more in line with the predictions of clump-fed scenarios rather than with those of core-fed scenarios.

Funder

MEXT ∣ Japan Society for the Promotion of Science

ANID BASAL

National Natural Science Foundation of China

China Postdoctoral Science Foundation ∣ Postdoctoral Research Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3