On the Formation of Over-ionized Plasma in Evolved Supernova Remnants

Author:

Katsuragawa MihoORCID,Lee Shiu-Hang,Odaka Hirokazu,Bamba AyaORCID,Matsumura Hideaki,Takahashi Tadayuki

Abstract

Abstract One of the outstanding mysteries surrounding the rich diversity found in supernova remnants (SNRs) is the recent discovery of over-ionized or recombining plasma from a number of dynamically evolved objects. To help decipher its formation mechanism, we have developed a new simulation framework capable of modeling the time evolution of the ionization state of the plasma in an SNR. The platform is based on a one-dimensional hydrodynamics code coupled to a fully time-dependent nonequilibrium ionization calculation, accompanied by a spectral synthesis code to generate space-resolved broadband X-ray spectra for SNRs at arbitrary ages. We perform a comprehensive parametric survey to investigate the effects of different circumstellar environments on the ionization state evolution in SNRs up to a few 104 yr. A two-dimensional parameter space, spanned by arrays of interstellar medium (ISM) densities and mass-loss rates of the progenitor, is used to create a grid of models for the surrounding environment, in which a core-collapse explosion is triggered. Our results show that a recombining plasma can be successfully reproduced in the case of a young SNR (a few 100 to 1000 yr old) expanding fast in a spatially extended low-density wind, an old SNR (>a few 1000 yr) expanding in a dense ISM, or an old SNR broken out from a confined dense wind region into a tenuous ISM. Finally, our models are confronted with observations of evolved SNRs, and an overall good agreement is found except for a couple of outliers.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud Formation by Supernova Implosion;The Astrophysical Journal;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3