An X-Ray and Radio View of the 2022 Reactivation of the Magnetar SGR J1935+2154

Author:

Ibrahim A. Y.ORCID,Borghese A.ORCID,Coti Zelati F.ORCID,Parent E.ORCID,Marino A.ORCID,Ould-Boukattine O. S.ORCID,Rea N.ORCID,Ascenzi S.ORCID,Pacholski D. P.ORCID,Mereghetti S.ORCID,Israel G. L.ORCID,Tiengo A.ORCID,Possenti A.ORCID,Burgay M.ORCID,Turolla R.ORCID,Zane S.ORCID,Esposito P.ORCID,Götz D.ORCID,Campana S.ORCID,Kirsten F.ORCID,Gawroński M. P.ORCID,Hessels J. W. T.ORCID

Abstract

Abstract Recently, the Galactic magnetar SGR J1935+2154 has garnered attention due to its emission of an extremely luminous radio burst, reminiscent of fast radio bursts (FRBs). SGR J1935+2154 is one of the most active magnetars, displaying flaring events nearly every year, including outbursts as well as short and intermediate bursts. Here, we present our results on the properties of the persistent and bursting X-ray emission from SGR J1935+2154 during the initial weeks following its outburst on 2022 October 10. The source was observed with XMM-Newton and NuSTAR (quasi-)simultaneously during two epochs, separated by ∼5 days. The persistent emission spectrum is well described by an absorbed blackbody plus power-law model up to an energy of ∼25 keV. No significant changes were observed in the blackbody temperature (kT BB ∼ 0.4 keV) and emitting radius (R BB ∼ 1.9 km) between the two epochs. However, we observed a slight variation in the power-law parameters. Moreover, we detected X-ray pulsations in all the data sets and derived a spin-period derivative of P ̇ = 5.52 ( 5 ) × 10 11 s s−1. This is 3.8 times larger than the value measured after the first recorded outburst in 2014. Additionally, we performed quasi-simultaneous radio observations using three 25–32 m class radio telescopes for a total of 92.5 hr to search for FRB-like radio bursts and pulsed emission. However, our analysis did not reveal any radio bursts or periodic emission.

Funder

H2020 European Research Council

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Searching for magnetar binaries disrupted by core-collapse supernovae;Monthly Notices of the Royal Astronomical Society;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3