Precision MARS Mass Reconstruction of A2744: Synergizing the Largest Strong-lensing and Densest Weak-lensing Data Sets from JWST

Author:

Cha SangjunORCID,HyeongHan KimORCID,Scofield Zachary P.ORCID,Joo HyungjinORCID,Jee M. JamesORCID

Abstract

Abstract We present a new high-resolution free-form mass model of A2744 that combines both weak-lensing (WL) and strong-lensing (SL) data sets from JWST. The SL data set comprises 286 multiple images, presenting the most extensive SL constraint to date for a single cluster. The WL data set, employing photo-z selection, yields a source density of 350 arcmin 2 , marking the densest WL constraint ever. The combined mass reconstruction enables the highest-resolution mass map of A2744 within the ∼1.8 Mpc × 1.8 Mpc reconstruction region to date, revealing an isosceles triangular structure with two legs of ∼1 Mpc and a base of ∼0.6 Mpc. Although our algorithm, which is called MAximum-entropy ReconStruction (MARS), is entirely blind to the cluster galaxy distribution, the resulting mass reconstruction traces the brightest cluster galaxies remarkably well. The five strongest mass peaks coincide with the five most luminous cluster galaxies within ≲2″. We do not detect any unusual mass peaks that are not traced by the cluster galaxies, unlike the findings in previous studies. Our mass model shows the smallest scatter of SL multiple images in both source (∼0.″05) and image (∼0.″1) planes, which is lower than in previous studies by a factor of ∼4. Although MARS represents the mass field with an extremely large number of free parameters (∼300,000), it converges to a solution within a few hours because we use a deep-learning technique. We make our mass and magnification maps publicly available.

Funder

National Research Foundation of Korea

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3