Visit Nearby Halo Substructures Using LAMOST DR9 MRS Data

Author:

Tang 唐 Xin-Zhe 馨哲ORCID,Zhao 赵 Jing-Kun 景昆,Yang 杨 Yong 勇ORCID,Ye 叶 Xian-Hao 先豪,Zhao 赵 Gang 刚ORCID,Gao 高 Qi 启

Abstract

Abstract Based on the LAMOST DR9 Medium Resolution Spectra (MRS) catalog, combined with astrometries from Gaia DR3, we conducted an investigation into the substructures in the stellar halo to obtain their chemical and kinematic information. We employed the HDBSCAN algorithm in the (L z , E, L xy ) space for clustering and utilized Mahalanobis distance to merge the clustering results. Ultimately, within the LAMOST DR9 MRS catalog, we identified members of Gaia–Sausage–Enceladus (GSE), Helmi streams, and the high-α disk and in situ halo. Additionally, there are three clusters that cannot be correlated with known substructures. Based on their angular momentum (L z ) characteristics, we have tentatively named two of them High-L z -Cluster-1 (HLC-1) and High-L z -Cluster-2 (HLC-2), both exhibiting high angular momentum (L z ) features. The third cluster, owing to its extremely low L z , is termed the Low-L z -Cluster. Then detailed analysis about those substructures are executed including member stars’ identification and kinematic and chemical distribution. The resulting GSE member stars exhibit a well-defined metallicity distribution function with its peak at [Fe/H] ∼ −1.2, consistent with previous findings, and we found there appear to be some differences in the distribution on the V totalr gal plane between GSE and its included Splash component. Regarding Helmi streams, in the [Mg/Fe]–[Fe/H] plane we detected potential traces of the α-knee phenomenon at [Fe/H] ∼ −1.53. Finally, we tentatively provide the possible origin for the HLC-1 and HLC-2.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Chinese Academy of Sciences

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3