Finite-time Response of Dynamo Mean-field Effects in Magnetorotational Turbulence

Author:

Gressel OliverORCID,Pessah Martin E.ORCID

Abstract

Abstract Accretion disk turbulence along with its effect on large-scale magnetic fields plays an important role in understanding disk evolution in general, and the launching of astrophysical jets in particular. Motivated by enabling a comprehensive subgrid description for global long-term simulations of accretions disks, we aim to further characterize the transport coefficients emerging in local simulations of magnetorotational disk turbulence. For the current investigation, we leverage a time-dependent version of the test-field method, which is sensitive to the turbulent electromotive force (EMF) generated as a response to a set of pulsating background fields. We obtain Fourier spectra of the transport coefficients as a function of oscillation frequency. These are well approximated by a simple response function, describing a finite-time buildup of the EMF as a result of a time-variable mean magnetic field. For intermediate timescales (i.e., slightly above the orbital frequency), we observe a significant phase lag of the EMF compared to the causing field. Augmented with our previous result on a nonlocal closure relation in space, and incorporated into a suitable mean-field description that we briefly sketch out here, the new framework will allow us to drop the restrictive assumption of scale separation.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3