Observations of the Onset of Complex Organic Molecule Formation in Interstellar Ices

Author:

Chu Laurie E. U.ORCID,Hodapp KlausORCID,Boogert AdwinORCID

Abstract

Abstract Isolated dense molecular cores are investigated to study the onset of complex organic molecule formation in interstellar ice. Sampling three cores with ongoing formation of low-mass stars (B59, B335, and L483) and one starless core (L694-2), we sample lines of sight to nine background stars and five young stellar objects (YSOs; A K   ∼ 0.5–4.7). Spectra of these stars from 2 to 5 μm with NASA’s Infrared Telescope Facility (IRTF) simultaneously display signatures from the cores of H2O (3.0 μm), CH3OH (C–H stretching mode, 3.53 μm), and CO (4.67 μm) ices. The CO ice is traced by nine stars, in which five show a long-wavelength wing due to a mixture of CO with polar ice (CO r ), presumably CH3OH. Two of these sightlines also show independent detections of CH3OH. For these we find the ratio of the CH3OH:CO r is 0.55 ± 0.06 and 0.73 ± 0.07 from L483 and L694-2, respectively. The detections of both CO and CH3OH for the first time through lines of sight toward background stars observationally constrains the conversion of CO into CH3OH ice. Along the lines of sight, most of the CO exists in the gas phase and ≤15% of the CO is frozen out. However, CH3OH ice is abundant with respect to CO (∼50%) and exists mainly as a CH3OH-rich CO ice layer. Only a small fraction of the lines of sight contains CH3OH ice, presumably those with the highest density. The high conversion of CO to CH3OH can explain the abundances of CH3OH ice found in later stage Class 1 low-mass YSO envelopes (CH3OH:CO r  ∼  0.5–0.6). For high-mass YSOs and one Class 0 YSO, this ratio varies significantly, implying local variations can affect ice formation. The large CH3OH ice abundance indicates that the formation of complex organic molecules is likely during the prestellar phase in cold environments without higher energy particle interactions (e.g., cosmic rays).

Funder

NASA

Spitzer Space Telescope

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3