X-Ray Observations of the Isolated Black Hole Candidate OGLE-2011-BLG-0462 and Other Collapsed Objects Discovered through Gravitational Microlensing

Author:

Mereghetti S.ORCID,Sidoli L.ORCID,Ponti G.ORCID,Treves A.ORCID

Abstract

Abstract Isolated black holes and neutron stars can be revealed through the observation of long-duration gravitational microlensing events. A few candidates have been found in surveys of stars in the direction of the Galactic bulge. Recently, thanks to the addition of astrometric information at milliarcsecond level, it has been possible to reduce the uncertainties in the masses and distances for some of these “dark” gravitational lenses and select the most promising candidates. These isolated compact objects might emit X-rays powered by accretion from the interstellar medium. Using data of the Chandra, XMM-Newton, and INTEGRAL satellites, we searched for X-ray emission in the isolated black hole candidate OGLE-2011-BLG-0462, and in several other putative collapsed objects found with gravitational microlensing. OGLE-2011-BLG-0462 has been recently interpreted as a 7.1 M black hole at a distance of 1.6 kpc, although a different group obtained a mass range (1.6–4.4 M ) that cannot exclude a massive neutron star. We have derived upper limits on the flux from OGLE-2011-BLG-0462 of 9 × 10−15 erg cm−2 s−1 in the 0.5–7 keV range and ∼2 × 10−12 erg cm−2 s−1 in the 17–60 keV range. The implied X-ray luminosity is consistent with the small radiative efficiency expected for a black hole and disfavors a neutron star interpretation. Limits down to a factor of about five lower are obtained for the soft X-ray flux of other candidates, but their interpretation is affected by larger uncertainties in the masses, distances, and spatial velocities.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3