Complexity of the Upper Solar Atmosphere Revealed from Spectropolarimetry during a Solar Eclipse

Author:

Qu Z. Q.ORCID,Chang L.ORCID,Dun G. T.,Xu Z.ORCID,Cheng X. M.ORCID,Deng L. H.,Zhang X. Y.,Jin Y. H.

Abstract

Abstract We analyze linear polarimetric spectrum data of solar emission lines with different formation temperatures in a visible light band from 516.3–532.6 nm, obtained during the 2013 Gabon solar eclipse using the prototype Fiber Arrayed Solar Optical Telescope. Complexities are found from the chromosphere through the transition zone to the corona at the spatial resolution limit of 2″ and temporal resolution of seconds. The observations show irregular spatial and spectral variations in linear polarization amplitudes, directions, and profile shapes. Within the observational band, spectral lines with different formation temperatures can have comparable polarization amplitudes in one spatial volume but one order difference in another, and at the same spatial volume, the amplitudes can differ by one order at different lines. The polarization amplitudes do not consistently increase with elongation in local regions. The variation in the direction of the polarization along the elongation is found from the green coronal line and the transition zone line more frequently than from the chromospheric lines. Such a variation in orientation is not synchronous for the different lines. Finally, Stokes Q/I profiles of the broad lines, such as the magnesium triplet and the green coronal line, show very diverse and complicated patterns. After pixel binning, we show that some of the complexity may be caused by the integration over different polarization sources at subresolution scales and/or along the line of sight in the optically thin layers with complex geometric corrugations.

Funder

NSFC ∣ Joint Fund of Astronomy

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3