Strong and Rapid X-Ray Variability of the Super-Eddington Accreting Quasar SDSS J081456.10+532533.5

Author:

Huang JianORCID,Luo BinORCID,Brandt W. N.ORCID,Du PuORCID,Garmire Gordon P.ORCID,Hu Chen,Liu HezhenORCID,Ni QinglingORCID,Wang Jian-Min

Abstract

Abstract We report strong and rapid X-ray variability found from the super-Eddington accreting quasar SDSS J081456.10+532533.5 at z = 0.1197. It has a black hole mass of 2.7 × 107 M and a dimensionless accretion rate of ≈4 measured from reverberation-mapping observations. It showed weak X-ray emission in the 2021 February Chandra observation, with the 2 keV flux density being 9.6 4.6 + 11.6 times lower compared to an archival Swift observation. The 2 keV flux density is also 11.7 6.3 + 9.6 times weaker compared to the expectation from its optical/UV emission. In a follow-up XMM-Newton observation 32 days later, the 2 keV flux density increased by a factor of 5.3 2.4 + 6.4 , and the spectra are best described by a power law modified with partial-covering absorption; the absorption-corrected intrinsic continuum is at a nominal flux level. Nearly simultaneous optical spectra reveal no variability, and there is only mild long-term optical/infrared variability from archival data (with a maximum variability amplitude of ≈50%). We interpret the X-ray variability with an obscuration scenario, where the intrinsic X-ray continuum does not vary but the absorber has a variable column density and covering factor along the line of sight. The absorber is likely the small-scale clumpy accretion wind that has been proposed to be responsible for similar X-ray variability in other super-Eddington accreting quasars.

Funder

MOST ∣ National Natural Science Foundation of China

China Manned Space Project

Chandra X-ray Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3