First Direct Imaging of a Kelvin–Helmholtz Instability by PSP/WISPR

Author:

Paouris EvangelosORCID,Stenborg GuillermoORCID,Linton Mark G.ORCID,Vourlidas AngelosORCID,Howard Russell A.ORCID,Raouafi Nour E.ORCID

Abstract

Abstract We present a comprehensive analysis aimed at proving the hypothesis that a train of small-scale features observed by the Wide-field Imager (WISPR) onboard the Parker Solar Probe (PSP) are the signature of a Kelvin–Helmholtz instability (KHI). These features were seen near the flank of a Coronal Mass Ejection (CME) wake between 7.5 R and 9.5 R , lasting for about 30 minutes. The CME was a slow event, associated with a streamer blowout. We analyzed the size of the eddies and found growth during their evolution while maintaining separation distances and alignment typical of Kelvin–Helmholtz vortexes. We then assessed the magnetic field conditions that would make the observation of such an instability plausible. Two methods were used to cross-check our findings. The measured thickness of the boundary layer supports KHI candidacy, and the estimated linear growth rate suggests nonlinear saturation within the expected timescale. We conclude that a KHI is a plausible explanation for the observed features, and therefore that such instabilities might exist in the low and middle solar corona (within ∼15 R ) and can be detected in white light observations. Their observation, however, might be rare due to stringent conditions like the observer’s proximity, suitable viewing circumstances, magnetic field topology, and flow properties. This study highlights the unique capability of PSP/WISPR in observing such phenomena, especially as PSP perihelia reach closer distances to the Sun.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3