The RR Lyrae Delay-time Distribution: A Novel Perspective on Models of Old Stellar Populations

Author:

Sarbadhicary Sumit K.ORCID,Heiger Mairead,Badenes CarlesORCID,Mateu CeciliaORCID,Newman Jeffrey A.ORCID,Ciardullo RobinORCID,Hallakoun Na’amaORCID,Maoz DanORCID,Chomiuk LauraORCID

Abstract

Abstract The delay-time distribution (DTD) is the occurrence rate of a class of objects as a function of time after a hypothetical burst of star formation. DTDs are mainly used as a statistical test of stellar evolution scenarios for supernova progenitors, but they can be applied to many other classes of astronomical objects. We calculate the first DTD for RR Lyrae variables using 29,810 RR Lyrae from the OGLE-IV survey and a map of the stellar age distribution (SAD) in the Large Magellanic Cloud (LMC). We find that ∼46% of the OGLE-IV RR Lyrae are associated with delay times greater than 8 Gyr (main-sequence progenitor masses less than 1 M ), and consistent with existing constraints on their ages, but surprisingly about 51% of RR Lyrae appear to have delay times of 1.2–8 Gyr (main-sequence masses between 1 and 2 M at LMC metallicity). This intermediate-age signal also persists outside the Bar region, where crowding is less of a concern, and we verified that without this signal the spatial distribution of the OGLE-IV RR Lyrae is inconsistent with the SAD map of the LMC. Since an intermediate-age RR Lyrae channel is in tension with the lack of RR Lyrae in intermediate-age clusters (noting issues with small-number statistics), and noting the age–metallicity constraints on LMC stars, our DTD result possibly indicates that systematic uncertainties may still exist in SAD measurements of old stellar populations, perhaps stemming from the construction methodology or the stellar evolution models used. We describe tests to further investigate this issue.

Funder

NSF

DGAPA/UNAM PAPIIT

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3