A Study of 90 GHz Dust Emissivity on Molecular Cloud and Filament Scales

Author:

Lowe IanORCID,Mason BrianORCID,Bhandarkar TanayORCID,Clark S. E.ORCID,Devlin MarkORCID,Dicker Simon R.ORCID,Duff Shannon M.,Friesen RachelORCID,Hacar AlvaroORCID,Hensley BrandonORCID,Mroczkowski TonyORCID,Naess SigurdORCID,Romero CharlesORCID,Sadavoy Sarah,Salatino Maria,Sarazin CraigORCID,Orlowski-Scherer JohnORCID,Schillaci Alessandro,Sievers JonathanORCID,Stanke ThomasORCID,Stutz AmeliaORCID,Xu ZhileiORCID

Abstract

Abstract Recent observations from the MUSTANG2 instrument on the Green Bank Telescope have revealed evidence of enhanced long-wavelength emission in the dust spectral energy distribution (SED) in the Orion Molecular Cloud (OMC) 2/3 filament on 25″ (0.1 pc) scales. Here we present a measurement of the SED on larger spatial scales (map size 0.°5–3° or 3–20 pc), at somewhat lower resolution (120″, corresponding to 0.25 pc at 400 pc) using data from the Herschel satellite and Atacama Cosmology Telescope (ACT). We then extend the 120″-scale investigation to other regions covered in the Herschel Gould Belt Survey (HGBS), specifically the dense filaments in the southerly regions of Orion A, Orion B, and Serpens-S. Our data set in aggregate covers approximately 10 deg2, with continuum photometry spanning from 160 μm to 3 mm. These OMC 2/3 data display excess emission at 3 mm, though less (10.9% excess) than what is seen at higher resolution. Strikingly, we find that the enhancement is present even more strongly in the other filaments we targeted, with an average excess of 42.4% and 30/46 slices showing an inconsistency with the modified blackbody to at least 4σ. Applying this analysis to the other targeted regions, we lay the groundwork for future high-resolution analyses. Additionally, we also consider a two-component dust model motivated by Planck results and an amorphous grain dust model. While both of these have been proposed to explain deviations in emission from a generic modified blackbody, we find that they have significant drawbacks, requiring many spectral points or lacking experimental data coverage.

Funder

EC ∣ European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3