Weighing the Darkness. II. Astrometric Measurement of Partial Orbits with Gaia

Author:

Andrews Jeff J.ORCID,Breivik KatelynORCID,Chawla ChiragORCID,Rodriguez Carl L.ORCID,Chatterjee SouravORCID

Abstract

Abstract Over the course of several years, stars trace helical trajectories as they traverse across the sky due to the combined effects of proper motion and parallax. It is well known that the gravitational pull of an unseen companion can cause deviations to these tracks. Several studies have pointed out that the astrometric mission Gaia will be able to identify a slew of new exoplanets, stellar binaries, and compact object companions with orbital periods as short as tens of days to as long as Gaia's lifetime. Here, we use mock astrometric observations to demonstrate that Gaia can identify and characterize black hole companions to luminous stars with orbital periods longer than Gaia's lifetime. Such astrometric binaries have orbital periods too long to exhibit complete orbits, and instead are identified through curvature in their characteristic helical paths. By simultaneously measuring the radius of this curvature and the orbital velocity, constraints can be placed on the underlying orbit. We quantify the precision with which Gaia can measure orbital accelerations and apply that to model predictions for the population of black holes orbiting stars in the stellar neighborhood. Although orbital degeneracies imply that many of the accelerations induced by hidden black holes could also be explained by faint low-mass stars, we discuss how the nature of certain putative black hole companions can be confirmed with high confidence using Gaia data alone.

Funder

Danish National Research Foundation

National Science Foundation

EC ∣ Seventh Framework Programme

Department of Atomic Energy, Government of India

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaia’s binary star renaissance;New Astronomy Reviews;2024-06

2. Dynamical formation of Gaia BH1 in a young star cluster;Monthly Notices of the Royal Astronomical Society;2023-09-12

3. Detecting dark compact objects in Gaia DR4: A data analysis pipeline for transient astrometric lensing searches;Journal of Cosmology and Astroparticle Physics;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3