A Deep-learning Anomaly-detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anticoincidence System

Author:

Parmiggiani N.ORCID,Bulgarelli A.ORCID,Ursi A.ORCID,Macaluso A.ORCID,Di Piano A.ORCID,Fioretti V.ORCID,Aboudan A.ORCID,Baroncelli L.ORCID,Addis A.ORCID,Tavani M.ORCID,Pittori C.ORCID

Abstract

Abstract Astro-rivelatore Gamma a Immagini Leggero (AGILE) is a space mission launched in 2007 to study X-ray and gamma-ray astronomy. The AGILE team developed real-time analysis pipelines to detect transient phenomena such as gamma-ray bursts (GRBs) and react to external science alerts received by other facilities. The AGILE anticoincidence system (ACS) comprises five panels surrounding the AGILE detectors to reject background-charged particles. It can also detect hard X-ray photons in the energy range 50–200 keV. The ACS data acquisition produces a time series for each panel. The time series are merged into a single multivariate time series (MTS). We present a new deep-learning model for the detection of GRBs in the ACS data using an anomaly detection technique. The model is implemented with a convolutional neural network autoencoder architecture trained in an unsupervised manner, using a data set of MTSs randomly extracted from the AGILE ACS data. The reconstruction error of the autoencoder is used as the anomaly score to classify the MTS. We calculated the associated p-value distribution, using more than 107 background-only MTSs, to define the statistical significance of the detections. We evaluate the trained model with a list of GRBs reported by the GRBWeb catalog. The results confirm the model’s capabilities to detect GRBs in the ACS data. We will implement this method in the AGILE real-time analysis pipeline.

Funder

Agenzia Spaziale Italiana

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3