COMAP Early Science. III. CO Data Processing

Author:

Foss Marie K.ORCID,Ihle Håvard T.ORCID,Borowska Jowita,Cleary Kieran A.ORCID,Eriksen Hans KristianORCID,Harper Stuart E.ORCID,Kim JunhanORCID,Lamb James W.ORCID,Lunde Jonas G. S.,Philip LijuORCID,Rasmussen Maren,Stutzer Nils-OleORCID,Uzgil Bade D.ORCID,Watts Duncan J.ORCID,Wehus Ingunn K.ORCID,Woody David P.,Bond J. RichardORCID,Breysse Patrick C.ORCID,Catha Morgan,Church Sarah E.,Chung Dongwoo T.ORCID,Dickinson CliveORCID,Dunne Delaney A.ORCID,Gaier Todd,Gundersen Joshua Ott,Harris Andrew I.ORCID,Hobbs Richard,Lawrence Charles R.,Murray Norman,Readhead Anthony C. S.ORCID,Padmanabhan HamsaORCID,Pearson Timothy J.ORCID,Rennie Thomas J.ORCID

Abstract

Abstract We describe the first-season CO Mapping Array Project (COMAP) analysis pipeline that converts raw detector readouts to calibrated sky maps. This pipeline implements four main steps: gain calibration, filtering, data selection, and mapmaking. Absolute gain calibration relies on a combination of instrumental and astrophysical sources, while relative gain calibration exploits real-time total-power variations. High-efficiency filtering is achieved through spectroscopic common-mode rejection within and across receivers, resulting in nearly uncorrelated white noise within single-frequency channels. Consequently, near-optimal but biased maps are produced by binning the filtered time stream into pixelized maps; the corresponding signal bias transfer function is estimated through simulations. Data selection is performed automatically through a series of goodness-of-fit statistics, including χ 2 and multiscale correlation tests. Applying this pipeline to the first-season COMAP data, we produce a data set with very low levels of correlated noise. We find that one of our two scanning strategies (the Lissajous type) is sensitive to residual instrumental systematics. As a result, we no longer use this type of scan and exclude data taken this way from our Season 1 power spectrum estimates. We perform a careful analysis of our data processing and observing efficiencies and take account of planned improvements to estimate our future performance. Power spectrum results derived from the first-season COMAP maps are presented and discussed in companion papers.

Funder

National Science Foundation

UKRI ∣ Science and Technology Facilities Council

Norges Forskningsråd

EC ∣ European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3