A New Census of the 0.2 < z < 3.0 Universe. II. The Star-forming Sequence

Author:

Leja JoelORCID,Speagle Joshua S.ORCID,Ting Yuan-SenORCID,Johnson Benjamin D.ORCID,Conroy CharlieORCID,Whitaker Katherine E.ORCID,Nelson Erica J.ORCID,Dokkum Pieter vanORCID,Franx MarijnORCID

Abstract

Abstract We use the panchromatic spectral energy distribution (SED)-fitting code Prospector to measure the galaxy logM*–logSFR relationship (the star-forming sequence) across 0.2 < z < 3.0 using the COSMOS-2015 and 3D-HST UV-IR photometric catalogs. We demonstrate that the chosen method of identifying star-forming galaxies introduces a systematic uncertainty in the inferred normalization and width of the star-forming sequence, peaking for massive galaxies at ∼0.5 and ∼0.2 dex, respectively. To avoid this systematic, we instead parameterize the density of the full galaxy population in the logM*–logSFR–redshift plane using a flexible neural network known as a normalizing flow. The resulting star-forming sequence has a low-mass slope near unity and a much flatter slope at higher masses, with a normalization 0.2–0.5 dex lower than typical inferences in the literature. We show this difference is due to the sophistication of the Prospector stellar populations modeling: the nonparametric star formation histories naturally produce higher masses while the combination of individualized metallicity, dust, and star formation history constraints produce lower star formation rates (SFRs) than typical UV+IR formulae. We introduce a simple formalism to understand the difference between SFRs inferred from SED fitting and standard template-based approaches such as UV+IR SFRs. Finally, we demonstrate the inferred star-forming sequence is consistent with predictions from theoretical models of galaxy formation, resolving a long-standing ∼ 0.2–0.5 dex offset with observations at 0.5 < z < 3. The fully trained normalizing flow including a nonparametric description of ρ ( log M * , logSFR , z ) is available online 20 20 https://github.com/jrleja/sfs_leja_trained_flow to facilitate straightforward comparisons with future work.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3