Beyond Galaxy Bimodality: The Complex Interplay between Kinematic Morphology and Star Formation in the Local Universe

Author:

Fraser-McKelvie A.ORCID,Cortese L.ORCID

Abstract

Abstract It is generally assumed that galaxies are a bimodal population in both star formation and structure; star-forming galaxies are disks, while passive galaxies host large bulges or are entirely spheroidal. Here we test this scenario by presenting a full census of the kinematic morphologies of a volume-limited sample of galaxies in the local universe extracted from the MaNGA galaxy survey. We measure the integrated stellar line-of-sight velocity to velocity dispersion ratio (V/σ) for 4574 galaxies in the stellar mass range 9.75 < log M [ M ] < 11.75 . We show that at fixed stellar mass, the distribution of V/σ is not bimodal, and that a simple separation between fast and slow rotators is oversimplistic. Fast rotators are a mixture of at least two populations, referred to here as dynamically cold disks and intermediate systems, with disks dominating in both total stellar mass and number. When considering star-forming and passive galaxies separately, the star-forming population is almost entirely made up of disks, while the passive population is mixed, implying an array of quenching mechanisms. Passive disks represent ∼30% (both in number and mass) of passive galaxies, nearly a factor of two higher than that of slow rotators, reiterating that these are an important population for understanding galaxy quenching. These results paint a picture of a local universe dominated by disky galaxies, most of which become somewhat less rotation-supported upon or after quenching. While spheroids are present to a degree, they are certainly not the evolutionary end point for the majority of galaxies.

Funder

Department of Education and Training ∣ Australian Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3