Probing the Diversity of Type Ia Supernova Light Curves in the Open Supernova Catalog

Author:

Bi ChangORCID,Woods Tyrone E.ORCID,Fabbro SébastienORCID

Abstract

Abstract The ever-growing sample of observed supernovae (SNe) enhances our capacity for comprehensive SN population studies, providing a richer data set for understanding the diverse characteristics of Type Ia supernovae (SNe Ia) and possibly those of their progenitors. Here, we present a data-driven analysis of observed SN Ia photometric light curves collected in the Open Supernova Catalog. Where available, we add the environmental information from the host galaxy. We focus on identifying subclasses of SNe Ia without imposing the predefined subclasses found in the literature to date. To do so, we employ an implicit rank-minimizing autoencoder neural network for developing low-dimensional data representations, providing a compact representation of the SN light-curve diversity. When we analyze light curves alone, we find that one of our resulting latent variables is strongly correlated with redshift, allowing us to approximately “de-redshift” the other latent variables describing each event. After doing so, we find that three of our latent variables account for ∼95% of the variance in our sample, and provide a natural separation between 91T and 91bg thermonuclear SNe. Of note, the 02cx subclass is not unambiguously delineated from the 91bg sample in our results, nor do either the overluminous 91T or the underluminous 91bg/02cx samples form a clearly distinct population from the broader sample of “other” SN Ia events. We identify the physical characteristics of SN light curves that best distinguish SNe 91T from SNe 91bg and 02cx, and discuss prospects for future refinements and applications to other classes of SNe as well as other transients.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1991T-like Supernovae*;The Astrophysical Journal Supplement Series;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3