Abstract
Abstract
We analyze spectra of a gravitationally lensed galaxy, known as the Sunburst Arc, that is leaking ionizing photons, also known as the Lyman continuum (LyC). Magnification from gravitational lensing permits the galaxy to be spatially resolved into one region that leaks ionizing photons and several that do not. Rest-frame UV and optical spectra from Magellan target 10 different regions along the lensed Arc, including six multiple images of the LyC leaking region and four regions that do not show LyC emission. The rest-frame optical spectra of the ionizing photon emitting regions reveal a blueshifted (ΔV = 27 km s−1) broad emission component (FWHM = 327 km s−1), comprising 55% of the total [O iii] line flux, in addition to a narrow component (FWHM = 112 km s−1), suggesting the presence of strong highly ionized gas outflows. This is consistent with the high-velocity ionized outflow inferred from the rest-frame UV spectra. In contrast, the broad emission component is less prominent in the nonleaking regions, comprising ∼26% of total [O iii] line flux. The high-ionization absorption lines are prominent in both the leaker and the nonleaker, but the low-ionization absorption lines are very weak in the leaker, suggesting that the line-of-sight gas is highly ionized in the leaker. Analyses of stellar wind features reveal that the stellar population of the LyC leaking regions is considerably younger (∼3 Myr) than that of the nonleaking regions (∼12 Myr), emphasizing that stellar feedback from young stars may play an important role in ionizing photon escape.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献